metabelian, soluble, monomial, A-group
Aliases: C82⋊C3, C42.2A4, C22.(C42⋊C3), SmallGroup(192,3)
Series: Derived ►Chief ►Lower central ►Upper central
C82 — C82⋊C3 |
Generators and relations for C82⋊C3
G = < a,b,c | a8=b8=c3=1, ab=ba, cac-1=ab-1, cbc-1=a3b6 >
Character table of C82⋊C3
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 8O | 8P | |
size | 1 | 3 | 64 | 64 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 3 | 3 | 0 | 0 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ5 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | -1+2i | -1+2i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1-2i | -1-2i | -1-2i | -1-2i | -1+2i | -1+2i | complex lifted from C42⋊C3 |
ρ6 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | -1-2i | -1-2i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1+2i | -1+2i | -1+2i | -1+2i | -1-2i | -1-2i | complex lifted from C42⋊C3 |
ρ7 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1+2i | -1+2i | -1+2i | -1+2i | -1-2i | -1-2i | -1-2i | -1-2i | 1 | 1 | 1 | 1 | 1 | 1 | complex lifted from C42⋊C3 |
ρ8 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1-2i | -1-2i | -1-2i | -1-2i | -1+2i | -1+2i | -1+2i | -1+2i | 1 | 1 | 1 | 1 | 1 | 1 | complex lifted from C42⋊C3 |
ρ9 | 3 | -1 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | 1+√2 | -1-√-2 | ζ86+2ζ8 | i | ζ86+2ζ85 | i | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | -i | 1+√2 | -1+√-2 | 1-√2 | -1-√-2 | 1-√2 | -1+√-2 | complex faithful |
ρ10 | 3 | -1 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | 2ζ83+ζ82 | -i | 1+√2 | -1+√-2 | 1-√2 | -1-√-2 | 1-√2 | -1+√-2 | 1+√2 | -1-√-2 | ζ86+2ζ85 | i | ζ86+2ζ8 | i | 2ζ87+ζ82 | -i | complex faithful |
ρ11 | 3 | -1 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | i | ζ86+2ζ8 | -1+√-2 | 1-√2 | -1-√-2 | 1+√2 | -1+√-2 | 1+√2 | -1-√-2 | 1-√2 | -i | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | i | ζ86+2ζ85 | complex faithful |
ρ12 | 3 | -1 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | -i | 2ζ83+ζ82 | -1+√-2 | 1+√2 | -1-√-2 | 1-√2 | -1+√-2 | 1-√2 | -1-√-2 | 1+√2 | i | ζ86+2ζ85 | i | ζ86+2ζ8 | -i | 2ζ87+ζ82 | complex faithful |
ρ13 | 3 | -1 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | 1-√2 | -1-√-2 | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | -i | ζ86+2ζ8 | i | ζ86+2ζ85 | i | 1-√2 | -1+√-2 | 1+√2 | -1-√-2 | 1+√2 | -1+√-2 | complex faithful |
ρ14 | 3 | -1 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | ζ86+2ζ8 | i | 1-√2 | -1+√-2 | 1+√2 | -1-√-2 | 1+√2 | -1+√-2 | 1-√2 | -1-√-2 | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | -i | ζ86+2ζ85 | i | complex faithful |
ρ15 | 3 | -1 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | ζ86+2ζ85 | i | 1+√2 | -1-√-2 | 1-√2 | -1+√-2 | 1-√2 | -1-√-2 | 1+√2 | -1+√-2 | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | -i | ζ86+2ζ8 | i | complex faithful |
ρ16 | 3 | -1 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | -i | 2ζ87+ζ82 | -1-√-2 | 1-√2 | -1+√-2 | 1+√2 | -1-√-2 | 1+√2 | -1+√-2 | 1-√2 | i | ζ86+2ζ8 | i | ζ86+2ζ85 | -i | 2ζ83+ζ82 | complex faithful |
ρ17 | 3 | -1 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | 1-√2 | -1+√-2 | ζ86+2ζ85 | i | ζ86+2ζ8 | i | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | -i | 1-√2 | -1-√-2 | 1+√2 | -1+√-2 | 1+√2 | -1-√-2 | complex faithful |
ρ18 | 3 | -1 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | -1-√-2 | 1-√2 | -i | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | i | ζ86+2ζ8 | i | ζ86+2ζ85 | -1+√-2 | 1-√2 | -1-√-2 | 1+√2 | -1+√-2 | 1+√2 | complex faithful |
ρ19 | 3 | -1 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | -1+√-2 | 1+√2 | -i | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | i | ζ86+2ζ85 | i | ζ86+2ζ8 | -1-√-2 | 1+√2 | -1+√-2 | 1-√2 | -1-√-2 | 1-√2 | complex faithful |
ρ20 | 3 | -1 | 0 | 0 | 1 | -1-2i | -1+2i | 1 | 1+√2 | -1+√-2 | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | -i | ζ86+2ζ85 | i | ζ86+2ζ8 | i | 1+√2 | -1-√-2 | 1-√2 | -1+√-2 | 1-√2 | -1-√-2 | complex faithful |
ρ21 | 3 | -1 | 0 | 0 | -1-2i | 1 | 1 | -1+2i | 2ζ87+ζ82 | -i | 1-√2 | -1-√-2 | 1+√2 | -1+√-2 | 1+√2 | -1-√-2 | 1-√2 | -1+√-2 | ζ86+2ζ8 | i | ζ86+2ζ85 | i | 2ζ83+ζ82 | -i | complex faithful |
ρ22 | 3 | -1 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | -1-√-2 | 1+√2 | i | ζ86+2ζ8 | i | ζ86+2ζ85 | -i | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | -1+√-2 | 1+√2 | -1-√-2 | 1-√2 | -1+√-2 | 1-√2 | complex faithful |
ρ23 | 3 | -1 | 0 | 0 | 1 | -1+2i | -1-2i | 1 | -1+√-2 | 1-√2 | i | ζ86+2ζ85 | i | ζ86+2ζ8 | -i | 2ζ87+ζ82 | -i | 2ζ83+ζ82 | -1-√-2 | 1-√2 | -1+√-2 | 1+√2 | -1-√-2 | 1+√2 | complex faithful |
ρ24 | 3 | -1 | 0 | 0 | -1+2i | 1 | 1 | -1-2i | i | ζ86+2ζ85 | -1-√-2 | 1+√2 | -1+√-2 | 1-√2 | -1-√-2 | 1-√2 | -1+√-2 | 1+√2 | -i | 2ζ83+ζ82 | -i | 2ζ87+ζ82 | i | ζ86+2ζ8 | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8 2 5 3 6 4 7)(9 16 15 14 13 12 11 10)(17 21)(18 22)(19 23)(20 24)
(1 18 9)(2 20 11)(3 22 13)(4 24 15)(5 21 16)(6 23 10)(7 17 12)(8 19 14)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8,2,5,3,6,4,7)(9,16,15,14,13,12,11,10)(17,21)(18,22)(19,23)(20,24), (1,18,9)(2,20,11)(3,22,13)(4,24,15)(5,21,16)(6,23,10)(7,17,12)(8,19,14)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8,2,5,3,6,4,7)(9,16,15,14,13,12,11,10)(17,21)(18,22)(19,23)(20,24), (1,18,9)(2,20,11)(3,22,13)(4,24,15)(5,21,16)(6,23,10)(7,17,12)(8,19,14) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8,2,5,3,6,4,7),(9,16,15,14,13,12,11,10),(17,21),(18,22),(19,23),(20,24)], [(1,18,9),(2,20,11),(3,22,13),(4,24,15),(5,21,16),(6,23,10),(7,17,12),(8,19,14)]])
G:=TransitiveGroup(24,389);
Matrix representation of C82⋊C3 ►in GL3(𝔽73) generated by
46 | 0 | 0 |
0 | 63 | 0 |
0 | 0 | 63 |
10 | 0 | 0 |
0 | 22 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
G:=sub<GL(3,GF(73))| [46,0,0,0,63,0,0,0,63],[10,0,0,0,22,0,0,0,1],[0,0,1,1,0,0,0,1,0] >;
C82⋊C3 in GAP, Magma, Sage, TeX
C_8^2\rtimes C_3
% in TeX
G:=Group("C8^2:C3");
// GroupNames label
G:=SmallGroup(192,3);
// by ID
G=gap.SmallGroup(192,3);
# by ID
G:=PCGroup([7,-3,-2,2,-2,2,-2,2,85,176,695,394,4707,360,1264,102,4037,7062]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^3=1,a*b=b*a,c*a*c^-1=a*b^-1,c*b*c^-1=a^3*b^6>;
// generators/relations
Export
Subgroup lattice of C82⋊C3 in TeX
Character table of C82⋊C3 in TeX